INTERNAL

HighWire
Release & Deploymen
Management

FUNDS >\\XIS

FUNDS A XIS

Policy title: HighWire Release & Deployment Management

Issue 2.0

Approved by: Darren Burrows

Approval Date: February 2025

Next Review Date: February 2026

Scope: The policy applies to Funds-Axis Group and all contractors

and other people working on behalf of the company.

Responsibility for Day to day responsibility for implementation: SO
Implementation &

Training: Day to day responsibility for training: 1SO
Distribution methods: Methods used to communicate this policy:

e Information Security Training Module

HW Release & Deployment Management Issue 2.0 Page 2 of 10 Pages

FUNDS A XIS

R g o T LU [Y U 4
1.1 ABOUL HIGNWITE ettt ettt ettt ettt ettt ettt ettt bbbttt ettt ettt s bbb tane 4
Core PlatfOrm SEIVICES ...coiviiiiiiiiei ettt e et e e 4

0 o] o oY gl =TT VA ol TP 4
=Yoo Tor T N = 1 0 Lot TSP 4

1.2 PUIMPOSE ettt ettt ettt et e s A E e At ee s as s A bt en s An b b en e ane 4
2. Release Management and Deployment ProCeSS ...ttt e 5
B O 1Y T PP PRS TR 5
2.2 Architecture Overview and Technology Platform ... eeseees 5
2.3 RELEASE PLANNING ettt s b s s e e bbb st b bt es bttt etesesesntasasane 5
2.4 Source Code ManNAGEMENT ...ttt et e et s et b st s s et esn s s b s e s assesnnans 6
2.5 ENVIronmMent ManagemMENT ...ttt tee et s st s st s s b s s s snnans 6

B Sl oY LU ot =Y u gV TP 6
2.7 RELEASE SCREAULE ...t ettt 7
3. CONLINUOUS DELIVEIY .ttt ettt et et a bbb s st s s s s sn s 7
3.1 PIPEUNE OVEIVIEW ...ttt sttt st e s bbb s s s s s s ananbeses s 7
3.2 Deployment Process USinNg JENKINS. ...ttt nasnss s 8

HW Release & Deployment Management Issue 2.0 Page 3 of 10 Pages

FUNDS A XIS

1.1 About HighWire

HighWire is a cloud-based technology solution comprising multiple modules accessible to
users as a unified platform. Developed by Funds-Axis, it harnesses the capabilities of the
AWS cloud platform to deliver a comprehensive, plug-and-play solution with rapid
implementation capabilities.

The platform consists of the following core services and functions:

Core Platform Services

Investment Compliance Monitoring: Real-time monitoring and validation of
investment restrictions.

Regulatory Reporting: Automated generation and submission of regulatory reports.
Investor Documents: Creation and management of investor-facing documentation.
Shareholder Disclosures: Management of shareholder communication and
disclosure requirements.

Risk Monitoring: Comprehensive risk assessment and monitoring capabilities.

Supporting Services

Learning Management System: Delivery of compliance courses and tracking of user
progress.

Information Portals: Access to regulatory obligation tracking across multiple
jurisdictions.

Technical Infrastructure

Backend built using Java (Spring Boot).

Frontend using Vue.js.

PostgreSQL database for persistence.

DevOps automation through Terraform, Jenkins, and Docker.
Real-time monitoring via AWS CloudWatch.
Comprehensive security tools and controls.

1.2 Purpose

This document outlines the Release and Deployment process for the HighWire Product
Platform. It describes the technology tools, architecture, and development processes used
to ensure efficient, secure, and controlled engineering practices.

HW Release & Deployment Management Issue 2.0 Page 4 of 10 Pages

FUNDS A XIS

2.1 Overview

HighWire development adheres to an automated DevOps process for release and
deployment. The application architecture follows an API-First approach, with each feature
implemented as an API on the backend, loosely coupled with front-end modules to provide
a cohesive solution.

Infrastructure as code principles are strictly followed for application deployment and
maintenance, with all AWS resources provisioned using Terraform scripts.

2.2 Architecture Overview and Technology Platform

HighWire is hosted on AWS, leveraging best practices outlined in the AWS Well-
Architected Framework. Core application services are developed using Java and the Spring
Boot framework for the backend, while Vue.js is utilised for rich, interactive front-end

interfaces. PostgreSQL serves as the persistence layer.

Agile methodology drives product development, with Jira facilitating backlog management,
sprint planning, and tracking. Integrated code management via Jira and Bitbucket enables
traceability of code changes to corresponding stories.

Automated testing is integral to development, employing Rest-Assured for backend and
API testing, and Cypress for Ul testing. Infrastructure and deployments are managed
through Terraform, with applications containerised using Docker and deployed on AWS.
With this laaS implementation, environment creation and deletion are automated.

ESS HTML

» — -
pUSISENSS

>

Jéva ¢ spring W vuejs o
cucumber

PostareSOL REST-assured

€ JiraSoftware & Confluence o Bitbucket @preSS.IO

‘g’ Terraform @ Jenkins @—'docker amazon

webservices

2.3 Release Planning

Release planning and development follows Agile methodologies, with backlogs created as
stories in Jira. Product owners create these stories based on various sources such as

HW Release & Deployment Management Issue 2.0 Page 5 of 10 Pages

FUNDS A XIS

existing product enhancements, customer feedback during demos, and other factors. Once
created, these are elaborated and refined by Product owners and development team.
Stories are groomed and selected for development in each sprint.

2.4 Source Code Management

Bitbucket integrated with Jira and Confluence serves as the source code management
platform. Development adopts a modular approach, with separate repositories and
pipelines for various components.

Standard GitHub flow is followed for release management, with each requirement tracked
as a story in Jira. Every requirement is created as a story for development in Jira along with
acceptance criteria and scenarios (feature file).

For development of feature, developers create a feature branch from master branch. Junit
and Mockito are used for unit testing. API testing implemented using Rest Assured and Ul
testing is implemented using Cypress. On completion of feature, it is merged with Master
branch after feature implemented is test and the code reviewed.

2.5 Environment Management

Funds-Axis manages multiple environments throughout the product development
lifecycle:

Development Environments used by development team.

Each developer carries out development in their local environment.

Docker images used for testing.

Development environment used as integration testing environment
Test Controlled environment

Automation Testing along with Regression testing.

Manual Sanity Checks

Development team has read-only access

Staging Environment to validate production issues / defects.
Used to carry out product demos.
No development or testing in this environment.
Maintained as replica of Production environment.

Production Production environment
No access to Funds-Axis development team

2.6 Product testing

HighWire development embraces Test-Driven Development (TDD) and Behaviour-Driven
Development (BDD) approaches:

Each story is developed along with Junit test cases for unit level testing.

HW Release & Deployment Management Issue 2.0 Page 6 of 10 Pages

FUNDS A XIS

Mockito framework is used for mocking classes and objects.

Product development follows “API-First” design approach.

Each API developed along with end-to-end API automated test cases.

Rest Assured framework is utilized to automate API testing.

Feature files and scenarios form the input to test case implementation.

For front-end (Ul testing) automation, we use Cypress Framework.

Apart from these automated testing, exploratory manual testing is carried out for
each story.

On completion automated and manual testing; stories are released to stage and
production.

2.7 Release schedule

Continuous Integration and Continuous Deployment (CI/CD) practices are adopted for
product releases:

Once the story is approached in Testing stage, CI/CD pipeline is triggered to deploy
story to staging and Production.

While staging environment update is immediate, update to product environment is

control.

All release updates to production environment happens after business-hours. This

is to avoid any disruption to live environments.

Exception to above process is hot-fix required to production environment.

3.1 Pipeline Overview

Delivery pipelines are triggered by Git events, initiating automated build, testing, and
deployment processes. Jenkins orchestrates the deployment pipeline, conducting code style
verifications, unit testing, and packaging of Docker images:

Jenkins Blueocean

git push (feature) .

BitBucket Git Webhook Build and Test Docker Build Master
. Branch? -

]
merge —t

(master) Dev ‘

-[Test }——% Staging ‘ » Production ‘
On failure / success l:

Microsoft Teams Notification

HW Release & Deployment Management Issue 2.0 Page 7 of 10 Pages

FUNDS A XIS

Delivery pipeline is triggered on following events:
o Git push to feature branch.
o Merge to master branch.
On receipt of Git events, Jenkins trigger deployment process.
Build and automation tests are carried out:
o The application is built using the "mvn compile" command.
o Checkstyle is used to perform code style verifications.
o The mvn test command is utilized for automated unit testing of the
application.
This is followed by packaging docker images by initiating Dockers:
o Build docker images using docker build.
o Push docker image to repository. HighWire utilises AWS ECR as image
repository.
On merge to master branch:
o Build is deployed to Test environment, where all the automated testing
including regression testing is carried out.
o Build is then deployed to Stage and Production environment.
On failure in any stage of the process; notification is sent using Microsoft teams.

git push (feature)
: . | . . Master
BitBucket Git Webhook ’ Build and Test Docker Build > Branch?
A
* Build .
» Coding Stds El:uﬂtd I;)ocker
merge chec Core
(master) + Unit Testing ushto
L2
Dev Test
* Deploy ECS * Deploy|ECS
* Automated & * Automated &
Manual Testing Manua| Testing
* Approval * Approval
L Staging Production
* Deploy ECS * Deploy ECS
* Sanity Testing * Sanity Testing
Jenkins Pipeline (Jenkinsfiles)

3.2 Deployment Process using Jenkins.

Process for deployment from the master branch:

Login to Jenkins to initiate deployment process. It is also triggered on merged to
Master Branch

HW Release & Deployment Management Issue 2.0 Page 8 of 10 Pages

FUNDS A XIS

Click on 'Ops' Tab and select 'semaprod' from the list. We can view 'Build

History' with the latest build details.

Once we click on the 'Build with Parameters' option, screen will be navigated to the
Project semaprod page.

Build with Parameters has two modes:

o GO - This Mode will deploy all the builds till Production Environment.

o NOPROD - This Mode will deploy the code till Stage Environment only. For
deploying the code till Production, the mode must be set as GO and then the
build must be started.

HighWire Application Relevant jobs

Backend: HighWire

Frontend: HighWire-client

'Master' branch is used for Production deployment.

Click on the 'Open Blue Ocean' to get the list of Feature Branches.

Click on the 'Master' Branch to view the current build status.

Pipelines consist of all the test and deployment status and shows the currently
running tasks or the deployed status.

Frontend Pipeline with the deployment status can be view by clicking on

the HighWire-client Job and selecting the Master Branch.

HW Release & Deployment Management Issue 2.0 Page 9 of 10 Pages

\
FUNDS /\\XIS

%{%ﬁ' CONTACT US

R, +44 (0) 28 9032 9736

9 info@funds-axis.com
u @ www.funds-axis.com

m @ 12 Gough Square, London,
United Kingdom, EC4A 3DW

